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Introduction and Preface

1. Introduction and Preface

1.1 Goals

This document, the Rationale for the design of the Ada programming language, has evolved
4 over a number of years.

A first version appeared in 1978 as the Rationale for the Green programming language, and
this was revised in 1979 at the time that Green was finally selected as Ada, The purpose of
these documents was to explain the motivation for the language design, and to justify and
defend its position against the other competitive languages and the Ironman (later Steelman)
requirements. No corresponding document was written in 1980 when Ada was proposed as a
standard, nor in January 1983 when Ada finally became both an ANSI and Military Standard.
The present version completes and revises a draft issued in January 1984 and which was the
subject of public review.

The goal of these documents has also evolved. The original goal was both motivational and
defensive; a major concern was implementability (in potentially controversial areas such as
overload resolution) especially since there were no compilers then in existence. This last
concern is now substantially reduced since implementability is well demonstrated by a
number of production quality compilers.

Equally the goal is not to document and justify every language design decision: it would be
difficult to replace the archive containing the hundreds of study notes and thousands of
comments produced between 1977 and 1983.

The present goal is thus now more inspirational: to give the reader a feel for the spirit of the
language, the motives behind the key features and to create the basis for understanding how
they fit together both globally as viewed from the outside and in detail as viewed from the
inside; above all to impart an appreciation of the main architectural lines of the language and
its overall philosophy. It is only by knowing this philosophy that a real understanding for the
detail will be obtained.



2 Ada Rationale

It is now 1986, and it may well be asked why this ultimate Rationale has taken so long to
emerge. We must admit that the main reason is simply that we have been deeply involved
over the past years in a number of activities aimed at creating an infrastructure that would
ensure the success of the Ada language, - in particular, the development of training material
and compilers. The success of Ada has now relieved that pressure and allowed us to complete
the work started in 1978, and to make available what we hope will be an important addition
to the Ada literature.

1.2 Structure

This document is divided into chapters covering different aspects of the language. Most
chapters correspond to chapters of the Reference Manual. Expressions and statements are
here regrouped in a single chapter, since the subject is fairly classical. Conversely, in view of
the importance of the subjects, special chapters are devoted to numeric types, access types,
and derived types, in addition to the chapter on types. The chapters of the Rationale are
fairly independent (at the cost of some repetition) and can be read in any order.

Most chapters of the Rationale have a common structure. They start with an introduction to
the topic discussed. An informal description of the language features follows. This
description is made in terms of examples chosen to reflect the major classes of uses of the
features considered.

We believe that the reader will get the spirit of the language reading these examples. They
should help the development of an intuition for programming style in the Ada language.

A discussion of the technical issues follows, or in some cases is interspersed with the
informal description. Such discussions cover the major design decisions, their justification,
and the interactions with other aspects of the language.

1.3 Acknowledgements

We would like to take this opportunity to acknowledge the contributions of several others to
the Ada Rationale: Jean-Raymond Abrial, Bernd Krieg-Brueckner, Jean-Claude Heliard,
Henry Ledgard, Ian Pyle, Olivier Roubine, Steve Schuman, Stan Vestal, and Brian Wichmann
contributed to the 1978 and 1979 initial versions. Brian Wichmann also contributed to the
1984 draft.

Other significant contributions were derived from the Language Study Notes by Jean-Loup
Gailly and Paul Hilfinger and by comments from the Distinguished Reviewers.
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ERRATA

The United States Department of Defense has included this errata sheet to clarify
certain aspects and improve the accuracy of The Rationale for the Design of the
Ada Programming Language as it was delivered to the Ada Joint Program Office by
the authors. No copyright is claimed in the clarification of the basic document.

Page For Read

1, line 3 Ada programming language, Ada Programming Language
(ANSI/MIL-STD-1815A),

57, line 14 (8,1,1,1,1) (1,1,8,1,1)

65, line 26 requires require

89, line 7 one negative one extra negative

97, line 35 above the decimal before the decimal

97, line 36 below the decimal after the decimal

126, lines 12 to 14 :=O; :Z0.0;

176, lines 37 to 38 division declared in the construction declared
visible part with two in the visible part
parameters of type with two parameters,
INTEGER. Hence the integer one of type INTEGER
literals 3 and 31 are and one of type
implicitly converted to POSITIVE. Hence the
this type and the division integer literals 3 and
is applied 31 are implicitly

converted to the
respective type and
the construction is
applied.

195, line 31 program procedure

218, line 22 to 23 named common "named COMMON"

220, line 1 following example: following example:
procedure DEMO is

220, line 31 end P; end P;
begin

end DEMO.

221, line 26 variable in object that contains



Ea e For Read

226, line 20 two integers one integer and one
positive number,

233, line 11 (LEFT, RIGHT: INTEGER) (LEFT: INTEGER; RIGHT:
POSITIVE)

248, line 28 (E); E;

250, line 12 limited private limited private;

250, line 19 BOOLEAN BOOLEAN;

252, line 17 -- default maximum length -- default maximum length
-- where the type REAL is any
-- properly declared real type

265, line 28 X, X

318, line 9 SINGULAR: exception; SINGULAR: exception;
--declaration of
procedures READ and PRINT
used below

320, line 20 function DIVISION (A, B: function DIVISION (A, B:
REAL) return REAL is REAL) return REAL is

--the type REAL is any
--properly declared real type

323, line 1 procedure APPLICATION is with TABLEMANAGER;

procedure APPLICATION is

328, line 19 SOMEITEM THING

328, line 21 out ITEM in out ITEM

330, lines 27 to 28 when NAME_ERROR=> null; when NAMEERROR 0> null;
end; end;

333, add at top -- Assume that all that follows is in the same
-- declarative region of some enclosing procedure

354, line 5 this wretched data type this data type

358, line 3 and 28 set system mask set system mask

360, lines 12 to 15 generic generic
type SOURCE is limited type SOURCE is limited
private; private;
type TARGET is limited type TARGET is limited
private; private;

function function



Page For Read

360, line 15 TARGET; A program TARGET;

A program

370, line 6 FILEMODE FILETYPE

370, line 11 limited; this limited. This

371. insert after
line 18 The procedure SETINDEX sets the current index of the

given file to the index value, which may exceed the current
size of the file. If the given index value exceeds the
current size of the file, item-sized "gaps" will
occur which are undefined items.

371, lines 19 to 20 index value and SET INDEX index value. The function
enables it to be set. The SIZE gives the number of
function SIZE gives the items in the file, which
number of items in the file includes both defined and
(defined or undefined), undefined items.

376 line 26 we have we have:
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1. Introduction and Preface

1.1 Goals

This document, the Rationale for the design of the Ada programming language, has evolved
over a number of years.

A first version appeared in 1978 as the Rationale for the Green programming language, and
this was revised in 1979 at the time that Green was finally selected as Ada. The purpose of
these documents was to explain the motivation for the language design, and to justify and
defend its position against the other competitive languages and the Ironman (later Steelman)
requirements. No corresponding document was written in 1980 when Ada was proposed as a
standard, nor in January 1983 when Ada finally became both an ANSI and Military Standard.
The present version completes and revises a draft issued in January 1984 and which was the
subject of public review.

The goal of these documents has also evolved. The original goal was both motivational and
defensive; a major concern was implementability (in potentially controversial areas such as
overload resolution) especially since there were no compilers then in existence. This last
concern is now substantially reduced since implementability is well demonstrated by a
number of production quality compilers.

Equally the goal is not to document and justify every language design decision: it would be
difficult to replace the archive containing the hundreds of study notes and thousands of
comments produced between 1977 and 1983.

The present goal is thus now more inspirational: to give the reader a feel for the spirit of the
language, the motives behind the key features and to create the basis for understanding how
they fit together both globally as viewed from the outside and in detail as viewed from the
inside; above all to impart an appreciation of the main architectural lines of the language and
its overall philosophy. It is only by knowing this philosophy that a real understanding for the
detail will be obtained.
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It is now 1986, and it may well be asked why this ultimate Rationale has taken so long to
emerge. We must admit that the main reason is simply that we have been deeply involved
over the past years in a number of activities aimed at creating an infrastructure that would
ensure the success of the Ada language, - in particular, the development of training material
and compilers. The success of Ada has now relieved that pressure and allowed us to complete
the work started in 1978, and to make available what we hope will be an important addition
to the Ada literature.

1.2 Structure

This document is divided into chapters covering different aspects of the language. Most
chapters correspond to chapters of the Reference Manual. Expressions and statements are
here regrouped in a single chapter, since the subject is fairly classical. Conversely, in view of
the importance of the subjects, special chapters are devoted to numeric types, access types,
and derived types, in addition to the chapter on types. The chapters of the Rationale are
fairly independent (at the cost of some repetition) and can be read in any order.

Most chapters of the Rationale have a common structure. They start with an introduction to
the topic discussed. An informal description of the language features follows. This
description is made in terms of examples chosen to reflect the major classes of uses of the
features considered.

We believe that the reader will get the spirit of the language reading these examples. They
should help the development of an intuition for programming style in the Ada language.

A discussion of the technical issues follows, or in some cases is interspersed with the
informal description. Such discussions cover the major design decisions, their justification,
and the interactions with other aspects of the language.

1.3 Acknowledgements

We would like to take this opportunity to acknowledge the contributions of several others to
the Ada Rationale: Jean-Raymond Abrial, Bernd Krieg-Brueckner, Jean-Claude Heliard,
Henry Ledgard, Ian Pyle, Olivier Roubine, Steve Schuman, Stan Vestal, and Brian Wichmann
contributed to the 1978 and 1979 initial versions. Brian Wichmann also contributed to the
1984 draft.

Other significant contributions were derived from the Language Study Notes by Jean-Loup
Gailly and Paul Hilfinger and by comments from the Distinguished Reviewers.
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We are also indebted to the comments on the 1984 draft from the Ada Europe Review Group
organized by Kit Lester, the comments by Henry Dancy and Vincent Amiot, and the
dedicated technical support of Marion Myers.

The Ada Rationale was developed by Alsys and Honeywell under a contract from the United
States Government (Ada Joint Program Office).

Jean D. Ichbiah
John G.P. Barnes
Robert J. Firth
Mike Woodger
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2. Lexical and Textual Structure

A program is a text that specifies actions to be performed by a computer.

Programs are written by human programmers, and read by their authors or by other
programmers for checking and maintenance purposes; they are also processed by compilers
and other automatic tools. The need to accommodate these various forms of communication
permeates every level of consideration of a programming language, including the most
immediate levels where we are only concerned with the physical appearance of a program
text.

The lexical and textual structures of a programming language are of course important for
ease of program compilation, and for compilation-time detection of errors. The importance
of lexical and textual structures is even greater for ease of reading and understanding
programs - in particular, for detection of logical errors - and for ease of teaching the
language. We believe that our understanding of programs can be greatly simplified if our
intuition is able to rely on textual forms that convey the logical structure of the program.
This is the justification for giving major consideration to readability and teachability in the
design of lexical and textual structures in Ada; moreover, special attention has been devoted
to structural analogies.

2.1 Lexical Structure

A program is written in characters forming lines on a printed page. The arrangement on the
page is primarily to assist the human reader, and consequently is mainly in free format. The
allowed characters belong to the ISO (ASCII) character set, and the text of a program may
contain both upper case and lower case letters. For portability reasons, it is possible to write
any program in a 56 character subset of the ISO character set.

On a higher level than that of characters, a program is considered to consist of lexical
elements. Both the mechanical compiler and the human interpreter of programs will tend to
work in lexical elements, so it is important that these elements should be clearly specified.
Lexical elements are clearly delimited and may not straddle line boundaries - a restriction
that assists human reading and helps compilers to recover after having detected an error.
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The lexical elements are:

" Identifiers, including those for reserved words and attribute designators

" Single-character delimiters and two-character compound delimiters

" Numeric literals: integer literals and real literals

" Character literals and string literals

Each literal is a lexical element that stands for a value, namely the value literally
represented. for example, 10 and IEI are two integer literals which both stand for the
integer value ten. In addition, a program text can include elements that have no influence on
the meaning of the program but are included as information and guidance for the human
reader or for the compiler. These are:

* Comments

" Pragmas

Identifiers start with a letter which may be followed by a sequence of letters and digits In
addition, an underline character may appear between two other characters of an identifier.
This underline is significant and plays the role of the space in ordinary prose (but without
breaking the integrity of the identifier). The need for such an underline is seen from good
choices of names such as BYTES PER WORD rather than BYTESPERWORD. Furthermore
the significance of the underline makes SPACE _PERSON a different identifier from
SPACEPERSON or SPACEPERSON and ANYLONGRIP different from
ANYLONGRIP.

Reserved words are special identifiers that are reserved for special significance in the
language. There are 63 such words. Many of them play an important role in the definition of
the overall syntax of the major program units of the language, for example:

procedure Is begin end

Other reserved words play a syntactic role at a more detailed level, for example:

constant in out range

Finally, seven of them are used as operators. These are the reserved words

and or xor not abs rem mod

Reserved words other than operators cannot be redeclared, and operators can only be
redeclared as operators and with the same precedence. Hence programmers cannot write
obscure programs by redefining the meaning of words that play an important syntactic role
in the definition of the structure of Ada texts. Similarly, declarations written by
programmers cannot affect overall properties of the syntax, for example, the fact that if two
adjacent lexical elements are identifiers, one of them (at least) must be a reserved word.


